
J .  Fluid Mech. (1988), aol. 194, p p .  153-173 

Printed in Great Britain 

153 
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The preferred mode of instability was investigated in an axisymmetric air jet of 
moderate Reynolds number. Natural instabilities are shown to scale with local shear- 
layer thickness and the preferred mode is shown to be a shear-layer instability. The 
spatial evolution of the preferred mode was examined by exciting the flow 
acoustically and then mapping the phase-locked velocity fluctuations. Throughout 
the potential core region the phase-locked profiles are shown to agree with the 
eigensolutions of the Orr-Sommerfeld stability equations provided the calculations 
are based on measured, mean velocity profiles. The excitation intensity was varied 
from low levels, where the flow was merely tagged, to  high levels where the mean flow 
was substantially distorted, and over that range of excitation there was no apparent 
deterioration in the agreement with stability predictions. 

1. Introduction 
The concept of a preferred mode of jet instability was introduced by Crow & 

Champagne (1971) to describe the response of their axisymmetric jet to externally 
imposed, axisymmetric excitations. The term was used to  denote the mode that 
attained the maximum growth under nonlinear saturation. Their measurements were 
taken a t  a fixed location on the jet centreline 4 diameters downstream from the jet 
exit plane. The frequency of the preferred mode was observed to scale with jet 
velocity Uj and diameter D such that f = 0.3Uj/D, and they conjectured that the 
mode was a global instability of the entire jet column. 

Since that time there has been controversy concerning the physical mechanism of 
the preferred mode. Some investigators (e.g. Kibens 1981 ; Hussain & Zaman 1981) 
distinguish two different types of jet instability : a shear-layer mode and the 
preferred mode. According to that point of view, the shear-layer mode is an 
inflexional instability of the initial shear layer where the frequency scales with the 
shear-layer thickness, whereas the preferred mode is a global instability of the entire 
jet column where the frequency scales with jet diameter. On the other hand several 
theoretical models have been developed based solely on shear-layer instabilities. For 
example, Crighton & Gaster (1976) considered the Rayleigh instability of a 
hyperbolic tangent velocity profile that grew in the streamwise direction. By using 
a multiple scales analysis to predict the spatial evolution of the perturbation 
amplitude, the wave with maximum total amplification a t  x / D  = 4 was calculated 
to have a Strouhal number near 0.38. This value is within the range of Strouhal 
numbers reported by various investigators for the preferred mode (Gutmark & Ho 
1983). Also, energy integral techniques have been reasonably successful in predicting 
the nonlinear evolution of pressure amplitudes in acoustically excited jets (Chan 
1977 ; Tam & Morris 1985). The integral formulation requires a shape assumption to 
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account for transverse distributions of turbulence quantities. These shape assump- 
tions are based on eigenfunctions of the Rayleigh equation which describes a shear- 
layer instability. 

The aim of the present study is to demonstrate that  there is no distinction between 
shear-layer modes and the preferred mode. First it  will be shown that naturally 
occurring instabilities in an unforced jet scale with local momentum thickness a t  all 
streamwise locations within the potential-core region. Then the Crow & Champagne 
instability will be excited acoustically and its spatial evolution along the jet core will 
be mapped. Based on phase-locked measurements of velocity fluctuations compared 
to Orr-Sommerfeld stability calculations it will be shown that the preferred mode is 
actually the shear-layer mode that is most amplified by x / D  = 4. By implication 
there is no such thing as a single preferred mode. The most amplified shear-layer 
instability depends on streamwise location and on the streamwise distribution of 
shear-layer thickness. 

This investigation was motivated by recent experiments (reviewed by Wygnanski 
& Petersen 1987) that have demonstrated that profiles of phase-locked velocity 
fluctuations can be predicted from linear, spatial stability theory. The experiments 
have encompassed a wide range of geometries including the plane wake, the plane 
mixing layer, as well as the axisymmetric jet. The agreement is quite good even when 
the flow is fully turbulent provided the calculations are based on the measured, mean 
velocity profile. In  the case of an axisymmetric mixing layer the stability eigenvalues 
scale with local shear-layer thickness; jet diameter enters the calculations as a 
parameter and as long as the ratio of momentum thickness to jet diameter is small 
it is not a very sensitive parameter (Michalke 1971 ; Michalke & Hermann 1982). 

2. Experimental facility 
The experiments were carried out in the jet facility shown in figure 1 .  The nozzle 

was used in the original Crow & Champagne experiment and the contour consisted 
of two tangent arcs. The exit diameter was 50.8 mm and the area contraction ratio 
was 36 : 1. The plenum chamber housed two air filters, a honeycomb and three screens 
to minimize flow disturbances. A pressure-regulated air supply was delivered 
through a system of driers, reservoirs and filters. The exit velocity could be 
controlled to an accuracy of & 1 YO. The jet emerged with a top-hat velocity profile 
and the free shear layer was initially laminar. The measurements reported in this 
study were conducted a t  an exit velocity of 16 m/s, which corresponds to a Reynolds 
number of 5.6 x lo4 based on nozzle diameter and exit velocity. The free-stream 
turbulence level a t  this speed was 0.1 1 % and was measured on the centreline at the 
nozzle exit. The entire jet was enclosed in a large cage made from Q mm mesh screen 
to minimize the effects of room draughts. 

The streamwise component of velocity was measured with a circumferential array 
of eight hot-wire sensors each 1.25 mm in length made from 5 pm platinum-plated 
tungsten wire. The probes were spaced a t  equal circumferential angles on a radial 
traverse mechanism and the probe holders were inclined at an angle of 60" with 
respect to the jet axis. At this orientation, the interference of the probes with the flow 
was minimized. The traverse mechanism was driven under computer control by a 
stepper motor and all eight probes moved simultaneously in the radial direction. The 
individual probes were aligned radially at the half-velocity point and an optical 
cathetometer was used to position the wires in the streamwise direction. 

Hot-wire data were acquired and analysed digitally. The hot-wire signals were 
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FIGURE 1 .  Air-jet facility. 

conditioned by passing them through a network of buck-and-gain amplifiers followed 
by a network of low-pass filters with cutoff frequencies of 10 kHz. They were then 
digitized to 16-bit resolution. The hot-wire signals were linearized digitally using a 
fourth-order calibration polynomial. 

Controlled excitation of the flow was accomplished acoustically using an array of 
eight speakers arranged a t  equal angles about the nozzle circumference. The speakers 
were driven from a common oscillator through individual phase-shifting networks 
and power amplifiers. The phase-shifting networks permitted compensation for 
variations in phase between speakers and can be used to excite circumferential modes 
of instability. The gains of the amplifiers were individually adjusted to compensate 
for variations in speaker efficiency. Phase-locked averages were phase-locked to the 
oscillator signal. 

3. Naturally occurring instabilities 
Since the Crow & Champagne experiment the concept of a preferred mode has been 

generalized to include unexcited jets. In  that case the preferred mode usually is 
defined as the passage frequency of the most energetic disturbance occurring near the 
end of the potential core. This frequency can be measured from a local peak in the 
power spectrum or from successive peaks in an autocorrelation function. I n  the case 
of the Crow & Champagne experiment the unexcited spectral peak occurred at  
f D / U ,  = 0.44 (their figure 30). Gutmark & Ho (1983) have compiled spectral 
measurements by various investigators and the reported Strouhal numbers f D / U ,  
ranged from 0.24 to 0.51. Some of this scatter can be attributed to the inherent 
uncertainty in defining a unique timescale from a broadband signal. For example 
Petersen (1978) obtained spectral estimates from the same data base that varied by 
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a factor of 2, depending on how the scale was defined. Even when a consistent 
spectral technique is used there is still some variation in the Strouhal number which 
can be related to boundary conditions a t  the nozzle exit. For example, Kibens (1981) 
and Drubka (1981) both observed a dependence of the Strouhal number on the initial 
momentum thickness. Ho & Hsiao (1983) observed essentially the same phenomenon 
in a planar jet. 

The present jet shear layer was initially laminar as i t  issued from the nozzle. The 
transition to turbulent flow occurred within the first nozzle diameter downstream 
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FIGURE 4. Power spectra of streamwise velocity measured a t  x / D  = 4.0 and a t  various radial 
locations. 

based on the emergence of the inertial subrange. Power spectra of the streamwise 
component of velocity, measured near the centre of the mixing layer ( r / D  = 0.5) a t  
various streamwise locations, are shown in figure 2. Within the first diameter there 
were three local peaks in the spectra occurring at frequencies of roughly 1200, 600 
and 300 Hz. The peak a t  1200 Hz was produced by the local instability of the initial 
shear layer. The peaks a t  600 Hz and 300 Hz evolved with streamwise distance and 
were produced by pairings or subharmonic resonances. By x / D  = 1.0 the inertial 
subrange is evident from the -% spectral decay. 

6-2 
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FIGURE 5. Power spectra of streamwise velocity measured along the inner edge of the mixing layer 
(-7'  ray) and scaled with local momentum thicknesses. ( a )  The region of laminar-turbulent 
transition; ( b )  the region extending from z / D  = 1.5 to 4.0. 

The end of the potential core is defined as the point where the developing mixing 
layers merge and completely fill the jet. Beyond that point the centreline velocity 
decays with streamwise distance. The measured distribution of centreline velocity, 
shown in figure 3, was obtained with a single hot-wire probe and was normalized by 
jet velocity U i  obtained from plenum pressure. Although the onset of centreline 
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velocity decay actually occurred a t  about 4.5 diameters from the jet exit the 
preferred mode is defined here as the natural instability observed a t  x / D  = 4.0, in 
keeping with other investigators (e.g. Gutmark & Ho 1983). 

The natural instability was determined from the velocity spectra shown in fig- 
ure 4.  At the centre of the mixing layer, r / D  = 0.5, the spectrum is typical of fully 
developed turbulent flow and the large-scale coherent motion is obscured by fine- 
scale turbulence. However the passage of large-scale structures can be inferred from 
their near-field signatures induced by the coherent vorticity field (Mollo-Christensen 
1967). The spectrum measured a t  the edge of the mixing layer, r / D  = 0, exhibited a 
local peak at a frequency of 125 Hz. The corresponding Strouhal number based on 
jet diameter f D / U ,  is 0.40 and is within the range of values compiled by Gutmark & 
Ho (1983). The three spectra are shown on the same absolute scale and it is apparent 
that the near field acts as a spatial filter that attenuates the broadband turbulence 
spectrum while leaving intact the spectral peak caused by the passage of the coherent 
structures. 

The frequency of the natural instability is different at each streamwise location. 
The spatial evolution of the instability is shown in figure 5 .  Velocity power spectra 
were measured along the edge of the mixing layer a t  a polar angle of - 7" with respect 
to the nozzle lip. This is approximately the line extending from ( x / D ,  r / D )  = (0,0.5) 
to ( x / D ,  r / D )  = (4.0,O). In  order to demonstrate that the natural instabilities scale 
with shear-layer thickness the frequencies are expressed as local Strouhal numbers 
oO/U, ,  where U ,  is the local centreline velocity, o is angular frequency (2nf ), and O 
is the local momentum thickness defined by 

This is the usual frequency scaling used in stability analyses (e.g. Michalke 1971). 
Within the first diameter the spectral shift to subharmonic frequencies exhibited a 
rough scaling with local Strouhal number (figure 5a) .  Beyond x / D  = 1.5 the power 
spectra collapsed to the same general curve with a peak near wB/U, = 0.4 (figure 5b) .  
The stability calculations of Crighton & Gaster (1976), expressed in terms of local 
variables, predict wO/U, = 0.34 for the most amplified wave ( f D / U ,  = 0.38 and 
D/B = 7 .1 ) .  By combining the spectral data and momentum-thickness measurements 
of Drubka (1981, figures 37 and 70)  the inferred wB/U, range from 0.32 to 0.39 at 
x / D  = 4.0. 

4. Viscous stability theory 
The object of exciting the preferred mode artificially is to map the spatial 

evolution of the disturbance from phase-locked velocity measurements. Phase- 
locked measurements result in a periodic signal of Jinite amplitude superimposed on 
a quasi-parallel, mean velocity profile. Linear stability theory predicts the spatial 
structure and amplification of inJinitesima1 waves superimposed on a quasi-parallel, 
mean velocity profile. Some of the capabilities and limitations of linear theory to 
predict the evolution of coherent structures are now understood. For example linear 
theory is inadequate for predicting total amplification. Although there is a significant 
improvement when weak, non-parallel terms are retained, the predicted amplification 
is still much larger than the measured values (Wygnanski & Petersen 1987). That is 
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because the nonlinear exchange of energy from the disturbance to  the mean flow or 
to othcr modes has been neglected. In  order to correctly predict these interactions, 
second-order terms must be retained (Wygnanski, Marasli & Champagne 1987). 

Non-parallel effects and weakly nonlinear effects are obtained by solving an 
amplitude equation. The eigenfunctions are obtained by solving a homogeneous 
equation that describes the stability of the locally parallel flow (e.g. Crighton & 
Gaster 1976; Plaschko 1979). The success of the perturbation theory then depends 
on the ability of the eigenfunctions, calculated from parallel stability theory, to 
describe transverse distributions of amplitude, phase, Reynolds stress, etc. Similarly, 
energy integral methods require shape assumptions that are based on eigenfunctions 
Calculated from locally parallel, linear stability theory (e.g. Chan 1977; Tam & 
Morris 1985). 

The stability equations can be formulated directly from the phase-locked equations 
of motion. Following Hussain & Reynolds (1970) the velocity field can be decomposed 
into the timc-averaged velocity, a phase-locked disturbance, and a phase incoherent 
disturbance : 

u = U+G+u’, (4.1) 

where the time average U = u, the phase-locked disturbance = ( u )  - U,  and the 
phase incoherent disturbance u’ = u- ( u ) .  The overbar denotes time average and 
the brackets denote phase-locked, ensemble average. Some time-averaged properties 
are 

Some phase-locked, ensemble averages are 

(u ‘ )  = 0 ;  ( d - u ‘ )  = 0 (4.3) 

and ( u - u )  = u. u+2a .  u+a-a+(u’ .u ’ ) .  (4.4) 

If the mean flow is assumed to be parallel, U = [U(r ) ,  O , O ] ,  then to first order the 
phase-locked equations of motion are 

v.a = 0, (4.5) 

The viscous terms are retained in order to obtain damped eigensolutions when the 
disturbance has travellcd beyond the point of neutral stability. Note that the 
molecular viscosity is appropriate to  this formulation and that the mean velocity is 
a time average rather than a zone average. The assumption of small disturbance 
amplitude, which is implicit in this formulation, will be severely stretched in some of 
the measurements to  follow. 

The phase-locked velocity fluctuations are modelled by normal-mode perturba- 
tions of the form (Batchelor & Gill 1962; Lessen & Singh 1973; Morris 1976): 

(&,6,d,$) = [E’(r), iG(r),H(r),P(r)] ei(asfm@-wt)+ C.C., (4.7) 

where a is the complex wavenumber, w is the angular frequency, and m is the 
spinning-mode number. The stability equations for an axisymmetric perturbation 
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are formulated by setting m = 0 and by substituting expressions (4.7) into the phase- 
locked equations of motion (4.5), (4.6). The resulting equations are 

I d  
r dr 

a F + - - ( 4 ) = 0 ,  

dU 
dr 

a(U-c)F+G-++P = 

dP i [d2G 1dG ( :2) ] 
dr  Re dr2 r dr 

a(U--c)G-- = -- -+--- a2+- G 

(4.8a) 

(4.8b) 

( 4 . 8 ~ )  

where c is the complex phase velocity (c = w / a ) ,  and Re is the local Reynolds number 
(Re = U ,  O/v). Equations (4.7)-(4.13) are written in non-dimensional form. The 
length and velocity scales are 8 and U,. 

The boundary conditions on the perturbations are (Batchelor & Gill 1962) 

F , G , P + O  as r+  co, 

G = 0, F, P finite a t  r = 0. 

(4.9a) 

(4.9b) 

For a given velocity profile U ( r )  and dimensionless frequency w the radial profiles 
F(r) ,  Gfr), P(r) are eigenfunctions and the complex wavenumber a is the eigenvalue. 

In  order to  solve (4.8) numerically over a finite domain it is necessary first to 
obtain analytic solutions to the asymptotic equations for large and small r .  If F and 
P are eliminated from (4.8) in favour of G the resulting fourth-order equation is 
similar to the Orr-Sommerfeld equation for two-dimensional flows : 

where 

dr  r dr 
(4.10) 

I n  the potential-core region of the jet, the mean velocity U( r )  approaches a 
constant value asymptotically a t  large and small values of r .  Consequently 
derivatives of U ( T )  vanish asymptotically. In  those limits (4.10) assumes the 
following asymptotic forms : 

[D2-iaRe(1-c)]D2G=0 a t  r+O,  (4.11a) 

[D2+iacRe]D2G = 0 a t  r+co. (4.11 b )  

Equations (4.1 1) can be solved exactly in terms of modified Bessel functions : 

where 

and 

where 

(4.12) 
1 0: 

Go = -Al -Ih(ar) -A2-I’ (Qr)  a t  r+O,  

Q2= a 2 + i a  Re(1-c), 

a Q2 

(4.13) 
1 a 
a 2 2  

G ,  = -A , -K~(o l r ) -A , - -K~(Zr )  a t  r + m ,  

Z2 = a2 -iac Re. 
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The first terms in (4.12) and (4.13) are independent of viscosity and resemble the 
inviscid solution for a cylindrical vortex sheet (Batchelor & Gill 1962). The other 
terms have been called the ‘viscous correction mode’. 

Equation (4.10) was written as four first-order differential equations which were 
integrated numerically using a standard fourth-order Runge-Kutta scheme. An 
iterative, shooting method was used to determine the eigenvalue. For the iterative 
procedure, the eigenvalue criterion of Lessen & Singh (1973) was used. At high 
Reynolds numbers (Re > 500) a normalization and orthogonalization technique 
(Bellman & Kalaba 1965) was employed to preserve the linear independence of the 
two solutions that form the eigenfunction. 

In  using the shooting method, the iteration procedure requires an initial estimate 
of the eigenvalue. The required accuracy of this estimate becomes critical a t  high 
Reynolds numbers where, owing to the orthonormalization procedure, the radius of 
convergence is quite small. In  the present work, the approximate value of the 
eigenvalue was determined by employing a search scheme based on the ‘argument 
principle ’ of Lessen, Sadler & Liu (1968). This technique has the added benefit that 
it can be used to determine whether the eigenvalue corresponds to the least stable 
radial mode for the particular values of Re and w .  

The stability calculations were based on measured velocity profiles. Gaster, Kit & 
Wygnanski (1985) showed that model profiles such as a hyperbolic tangent shape are 
inadequate if quantitative comparisons between measurement and theory are 
required. Since an analytic expression for U( r )  is required the measurements were 
fitted with profiles of the form 

(4.14) 
U(r) = 0.5[1- tanh (p)]  +C, sech2 (p) tanh2 (p) +C, sech4 (p) tanh (p), 
uo 

p = B(rlRO.5 - R0.5lrL 

where Ro.5 is the half-velocity radius. The empirical constants C, and C, were 
determined from a least-squares fit to the data and provide symmetric and 
antisymmetric corrections to a basic tanh profile (Michalke 1971). These terms 
provide two independent degrees of freedom for matching general asymmetries. The 
constant B was adjusted so that the momentum thickness of the analytic profile 
matched the measured value. 

Mean velocity profiles were measured without external excitation a t  streamwise 
positions ranging from x / D  = 0.25 to x / D  = 5. In  each case the radial survey 
extended from r / D  = 0.19 to the point where U ( r ) / U ,  < 0.1. Stability calculations 
were performed for each profile and the results were extrapolated to x / D  = 0. For 
each profile the Strouhal number oO/U,  was varied from 0 to 0.5 in increments of 
0.01. The increments were reduced to 0.005 near the neutral point. 

The imaginary and real parts of the eigenvalues resulting from the stability 
calculations are shown in figures 6 and 7 in the form of contour plots. The contour 
of neutral solutions is highlighted and the evolution of the preferred mode, 125 Hz, 
is indicated as a trajectory. The preferred mode was evidently a neutral wave by 
x / D  = 4.0. The largest amplification rate mi O = -0.125 occurred near x/U = 0.5 
and wB/U, = 0.17 (figure 6). It is interesting that the prcferred-mode trajectory 
missed the peak by about an octave a t  x / D  = 0.5. That may explain the observa- 
tion by Crow & Champagne that the most efficient means of forcing the preferred 
mode was to excite the jet at the harmonic frequency f D / U ,  = 0.6. 

There is a general decrease in amplification rates with increasing streamwise 
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FICURE 7. Contours of phase speeds computed from spatial stability theory. 

distance x / D .  At some point beyond the potential-core region there is a cutoff in 
axisymmetric instabilities. This has been predicted theoretically (Batchelor & Gill 
1962 ; Morris 1976) and observed experimentally (Dimotakis, Lye & Papantoniou 
1983) in the far jet. This cutoff phenomenon may account for the impression based 
on flow visualization that the near-jet region is dominated by a single axisymmetric 
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lengthscale. That lengthscale in fact corresponds to the most amplified instability, as 
predicted by Crighton & Gaster (1976). 

Variations in spectral-peak Strouhal number can also be explained based on the 
eigenvalue contours. Trajectories of peak Strouhal numbers from figure 5 are 
superimposed on the amplification rate contours in figure 6. The frequency of the 
initial instability was 1200 Hz. Subharmonic peaks a t  frequencies of 600 Hz and 
300 Hz emerged farther downstream a t  locations where the associated fundamental 
was approaching the neutral point. This frequency selection is related to the 
dispersion relationship. Contours of dimensionless phase velocity c / U ,  = o/a,  U,,  
figure 7 ,  show that high-Strouhal-number disturbances are relatively non-dispersive. 
A subharmonic resonance between amplified disturbances requires a range of non- 
dispersive frequencies that extends a t  least an octave below the neutral frequency 
(Peterscn 1978). The frequency range of non-dispersive waves, figure 7 ,  decreased 
with downstream distance, and beyond x / D  = 2.0 the range was less than an octave. 
The subharmonics occurred within the first two diameters and beyond that point 
there was a continuous shift in frequency until x / D  = 4.0 where the spectral peak 
and the 125 Hz trajectory coincided. The frequency of the spectral peak in this region 
generally tracked the contour of neutral growth rate. This behaviour is consistent 
with the usual observation (e.g. Schubauer & Skramstad 1947) that the maximum 
total amplification a t  fixed frequency occurs a t  the location of the neutral point. 

5. Preferred mode with external excitation 
It is necessary to document the boundary conditions in free-jet measurements if 

one wishes to make detailed predictions of spectral trends. This was demonstrated by 
the measurements of Cohen & Wygnanski (1987) taken in the initial, laminar region 
of a jet. The most energetic disturbance was not necessarily the most amplified 
disturbance but i t  could be predicted accurately by applying linear stability theory 
as a two-point transfer function to the ‘background ’ turbulence spectrum measured 
near the exit plane. Alternatively, the boundary conditions can be controlled 
through external excitation. Not only are the boundary conditions determined but 
the unsteady flow field can be mappcd by means of phase-locked averages. 

External excitation was used in order to map the spatial structure of the preferred 
mode by means of phase-locked velocity. The frequency of the excitation was 125 
Hz and was based on the frequency of the unforced spectral peak, figure 4. Two 
excitation levels were used in the present study and they will be identified by the 
parameter e = 1 or 4, proportional to the level. The low level was selected to ‘tag’ the 
preferred mode without changing the flow while the high level was selected to 
produce significant finite-amplitude effects. 

An important feature of the original Crow & Champagne experiment was the 
global sensitivity of the flow to the level of excitation. When the excitation was 
strong not only did the excited disturbance saturate but the flow itself was 
fundamentally altered. The jet spreading rate was increased and the broadband 
turbulence spectrum was changed. Active control of the flow by high level excitation 
has important technological implications and one would like to know how the 
structure of the instability is affected. One would also like to relate the excited 
disturbance to instabilities occurring naturally in the flow. Part of the difficulty 
comes from the different types of signal processing techniques used to educe coherent 
structures in excited us. unexcited flows. A phase-locked average is a filter that in 
principle can be applied to the total data record whereas a conditional sample is a 
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zone average that is limited usually to a minute fraction of the record. It is an open 
question which average is more representative of the natural flow. However, Hussain 
& Zaman (1981) did note a qualitative similarity between their phase-locked data 
taken in an excited jet and the conditionally sampled measurements of Yule 
(1978). 

The point of view adopted here is that coherent structures are instabilities that 
result mainly from the linear and nonlinear evolution of disturbances present a t  the 
boundary where the flow separates from the nozzle. That has been shown to be the 
case at  the point of laminar to turbulent transition (Cohen & Wygnanski 1987). In  
order to  tag a ‘natural ’ coherent structure it is sufficient to ensure that the natural 
disturbances present a t  the nozzle exit are not dominated by the artificial 
disturbance. The phase-locked average then recovers only that fraction of the 
evolved disturbances that remains temporally coherent with the excitation. 

The effect of excitation level on the turbulence power spectrum is presented in 
figure 8, which was measured on the jet centreline a t  x / D = 4 . 0 .  At the lower 
excitation level the disturbance was simply superimposed on the natural spectrum. 
At the higher excitation level there was considerable nonlinear distortion of the 
entire spectrum. Turbulence levels were increased a t  frequencies below the excitation 
and suppressed at frequencies within an octave above the excitation. 

Some of the spectral distortion a t  the higher level of excitation can be attributed 
to changes in the mean flow. Momentum thicknesses were calculated from the 
analytic profiles, (4.8), fitted to the measured velocity profiles and the spatial 
evolution is shown in figure 9. At the high excitation level the growth of the 
momentum thickness was accelerated owing to the increased entrainment rate 
whereas a t  the low excitation level the changes in the base flow were insignificant 
over the first four diameters. 

Distortion of the mean flow altered the stability of the flow because the stability 
eigenmodes depend on both the shape and the thickness of the shear layer. The 
spatial distributions of calculated growth rate of the preferred mode, f = 125 Hz, are 
shown in figure 10 based on measured velocity profiles a t  both levels of excitation. 
By x / D  = 4.0 the slightly excited shear layer remained unstable (aiB = -0.008) 
whereas the higher excitation resulted in a stable profile (a,O = 0.036). 

The phase reference of the phase-locked velocity fluctuations (u ( r ,  $,7))  was based 
on the signal from the oscillator used to drive the speaker array. The time 7 is defined 
as the time increment from the phase reference. At each streamwise location phase- 
locked velocity histories were measured over a range of radial locations. Amplitude 
profiles were obtained by calculating Fourier coefficients : 

Typical phase-locked velocity histories are shown in figure 11. Each value of 
(u ( r ,  $, 7)) is an ensemble average of 200 individual events, and the measurements 
have been Fourier transformed over circumferential angle $. In  this case the jet 
was excited a t  the high level. When the histories are transformed over delay time 7 
each radial position yields a single value of the Fourier coefficient Fmn(r),  Note that 
the maximum amplitude is about O.lUo and that the velocity fluctuations are out 
of phase across the mixing layer. 

The preferred mode is compared to stability theory in figure 12. Radial profiles of 
the Fourier coefficient Fol(r), corresponding to the axisymmetric (m = 0) mode and 
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FIGURE 8. Effects of 125 Hz excitation on power spectra of streamwise velocity a t  ( x / D ,  r / D )  = 
(4.0,O). Unexcited spectra are superimposed for comparison. Excitation level : (a)  e = 1 ; ( b )  e =4. 

the fundamental (n = 1 )  excitation frequency, are superimposed on the correspond- 
ing eigenfunctions. Stability eigenfunctions can be determined only to within a 
constant. In order to compare profiles shapes the eigenfunction magnitudes were 
normalized to match the area under the measured profile, and the phase angles were 
set to zero on the high-velocity side. The radial coordinate is expressed in terms of 
the similarity parameter 7 defined by 

7 = (r-R0.5)/e. (5 .2 )  
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FIGURE 10. Effect of excitation level on the computed, local stability of the preferred mode. 
Stability calculations are based on local, measured velocity profiles. Symbols same as in 
figure 9. 

The general agreement between measurement and theory is good and the radial 
locations of maxima and minima are correctly predicted. There is no apparent 
deterioration in the agreement a t  the high excitation level even though the 
amplitude was nearly 10% of the jet velocity and even though the stability mode 
was locally damped. 

The spatial evolution of the preferred mode a t  the low excitation level is shown in 
figures 13 and 14. The stability eigenfunctions are shown as solid lines. There were 
significant changes in the shapes of the profiles and the agreement between 
measurement and calculation is quite good. It is apparent that  the preferred mode 
evolves as a local, shear-layer instability. Similar quantitative agreement was 
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FIGURE 13. Spatial evolution of phase-locked amplitude profiles compared to stability 
eigenfunctions. Excitation: 125 Hz, e = 1. Measurement location x / D :  (a) 0.5; (b) 1 .0; (c) 2.0; 
(d )  3.0; (e) 4.0; ( f )  5.0. 

attained at the high excitation level. The decrease in the range of 7 towards the end 
of the potential core was caused by the travel of the radial traversing mechanism 
being fixed whereas the momentum thickness increased. 

The calculated phase speeds are compared to measurements in figure 15. Since the 
flow is dispersive it is the advance in phase angle that is actually measurable. The 
phase advance along rays of constant r/ can be calculated from a,., the real part of the 
streamwise wavenumber, according to 
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FIGURE 14. Spatial evolution of phase delay profiles compared to stability eigenfunctions. Same 
conditions as in figure 13. 

The measurements were made along the high-speed side ( r /D  = 0.2) of the jet 
mixing layer and the agreement with parallel, stability theory is excellent. The phase 
speed measured by Crow & Champagne a t  ( x / D ,  r / D )  = (4.0,0) are included to show 
that the present measurements are consistent with theirs. It must be noted that 
phase speeds calculated on the basis of a parallel mean flow are uniform across the 
flow whereas the measured phase advance varies across the flow. This effect can be 
taken into account within the linearized theory by retaining weak non-parallel terms 
(Crighton & Gaster 1976). For that reason the present calculations should be 
regarded as an approximation. The approximation may be reasonably good because 
the phase angles change slowly with radius on the high-speed side and because the 
measurements were made near the critical layer. 
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FIGURE 15. Phase advance measured a t  r / D  = 0.2 compared to stability computations: -, 
stability theory; --, Crow & Champagne (1971). 

6. Discussion 
The streamwise distribution of natural instabilities were measured in the 

axisymmetric mixing layer of a low-speed air jet of moderate Reynolds number. The 
preferred mode was excited artificially and its spatial evolution was mapped using 
phase-locked velocity measurements. Based on those sets of measurements we can 
make the following observations. 

(i) Within the first four diameters downstream of the nozzle exit plane the natural 
instabilities scaled with local shear-layer thickness rather than jet diameter. The 
distribution of passage frequencies associated with the instabilities could be 
explained from spatial stability theory provided the calculations were based on 
measured profiles of mean velocity. 

(ii) The spatial structure of the preferred mode agreed with eigenfunctions 
calculated from the Orr-Sommerfeld stability equations based on measured velocity 
profiles. There was no apparent deterioration in the agreement between measurement 
and theory a t  high excitation levels even though there was considerable mean flow 
distortion and even though phase-locked amplitudes reached levels near 10 % of the 
jet speed. There was no apparent deterioration between measurement and theory 
even at streamwise locations where the stability eigenmodes were locally damped. 

(iii) By implication, there is no single preferred mode. The Orr-Sommerfeld 
eigenmodes scale with local shear-layer thickness. Je t  diameter enters only as a 
parameter. The most amplified shear-layer mode depends on streamwise location and 
on the streamwise distribution of local shear-layer thickness. 

Nevertheless flow-visualization experiments seem to suggest that the near-jet 
region is dominated by a single, axisymmetric lengthscale. It is our view that this 
impression is the result of a cutoff in the axisymmetric mode that occurs near the end 
of the potential core, rather than an indication of a global instability. Spatial 
stability theory predicts that  helical instabilities become dominant beyond x / D  = 4 
(Michalke &, Hermann 1982) and in the fully developed region axisymmetric 
disturbances are damped (Batchelor & Gill 1962; Morris 1976). I n  fact, flow 
visualization of the far jet suggests that  the preferred mode is helical and has a 
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lengthscak commensurate with the local shear-layer thickness (Dimota,kis et ul. 
1983). 
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